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Outline

• Climate (e.g., NASA GEOS5) models
– Column physics

• Port the solar radiation code

– Dynamics
• Analyze the finite volume dynamics core

– 4D Var data assimilation
• Be very compute-intensive
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Background

• NASA is interested in the potential performance and
cost benefits of adapting some science applications
to emerging nontraditional processors such as the
IBM Cell
– Motivation

• Increase performance by one to two orders of magnitude over
traditional processors.

– Challenges
• SPE’s small local memory (256 KB)
• A low-level communication mechanism
• Direct memory address management
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The IBM Cell Processor

• 205 single-precision GFLOPS
• High-speed data ring (EIB) with a sustained bandwidth of 205GB/s
• 25.6 GB/s processor-to-memory bandwidth
• 256KB local store at SPE
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Processes in a Climate Model

http://www.ucar.edu/communications/CCSM/overview.html
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The components of solar and infrared radiation
together can take at least 20% computing time
of the atmosphere model of NASA GEOS 5

NASA GEOS 5 Code Structure
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Climate and Weather Models

• Constraints
– A few hundred thousand lines of code written in Fortran over 20+

years
• Some modularity in F90/95
• Still evolving

– Production requirement
• Cannot rewrite completely
• Minimal intrusion
• Good ratio of performance to cost

• Solutions
– Select the computationally intensive model components

• I/O is smaller compared to computation
• The number of lines of code is manageable
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Porting Strategies for A Cell Processor

• To simplify porting, put the calculations
involving dependency into one SPE
– Take in extra data to make it self-contained

• The communication cost for extra data should
be smaller than its calculation cost

• Minimize the intrusion to the original
code as much as possible
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Data Decomposition for Cell Streaming Model:
Climate and Weather Applications

column physics component

dynamics component
(e.g., stencil calculations)
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Port the Solar Radiation Code to IBM Cell Processor

 

Local StoreMain Memory Data Transfer via DMAGlobal Circulation Model

The solar radiation component of NASA’s Goddard Earth Observing System Model, Version 5 
(GEOS-5) was chosen to evaluate the Cell’s programming paradigm due to these factors:

• One of the most computationally intensive parts of GEOS-5, at least 20% (including infrared radiation)
• The time required for I/O is much smaller than for numeric computation
• The independent vertical column calculation greatly simplifies parallel programming
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Flow Diagram of Data Transfer via DMA (4 SPEs)
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Detailed Memory Analysis
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Profile of The Cell-Version Solar Radiation Code
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Performance

1 core of Intel Xeon
(dempsey),  3.2 GHz, with 4
MB cache (2MB per core)

single precisionsingle precisionsingle precision, vectorization
and unrolling of deledd() and
cldflx()

1 core of Intel Xeon
(woodcrest),  2.66 GHz, with
4 MB cache (2MB per core)

1 core of Intel
Itanium2, 1.5
GHz, with 4MB
Cache

1 PPE + 8 SPEs
PPE: 64-bit PowerPC, 3.2GHz
SPE: 128-bit SIMD, 3.2 GHz

XeonItanium 2IBM BladeCenter QS20
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Performance

• For 1024 columns, latest results show that
the Cell ran the C-version code 8.8, 11.6,
12.8 times faster than a core on Intel’s
Woodcrest, Dempsey, and Itanium2
processors for the baseline code (Fortran,
single-precision), respectively, with
– Vectorization
– Unrolling (~11% improvement)
– IBM XL SPU C compiler (~20% improvement over gcc)
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Accelerate
The Key Climate and Weather Community Component

Cubed-Sphere Finite Volume Dynamics (CSFVD)

Data patch for SPEData domain for MPI process

Cubed-sphere grid Data decomposition

•  CSFVD becomes next-generation climate models and weather forecast
systems of NASA GMAO, NOAA GFDL, and NSF NCAR

•  CSFVD takes at least 25% of total computing time
•  Our analysis indicates that CSFVD can use Cell’s streaming programming
model to accelerate
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Computing Requirement for 4D-Var

• The 4D Var data assimilation system
better utilize satellite observations and
consequently improve forecasting skill
– Typically request hundreds of iterations of

the linearized forecast model and its adjoint
for each forecast run.

– Require significantly shorten the execution
time of the model to satisfy the operational
requirement.
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Summary

• We have demonstrated that IBM Cell
technology can dramatically accelerate the
physics components of climate and weather
applications

• Our analysis shows that the dynamics
component should be amenable to accelerate

• Data assimilation is extremely compute-
intensive, which desires extraordinary
acceleration



Shujia Zhou, 2008

Acknowledgements

• We would like to thank
– Tsengdar Lee (NASA High End Computing Program) for funding

support
– Mike Seablom for inspiration and helpful discussion
– Bruce Van Aartsen and Carlos Cruz (NASA-GSFC/Northrop

Grumman) for assisting with code translation from Fortran to C
– NASA NCCS for installing the IBM Cell Simulator for code

development
– The Dice Project for training support
– The UMBC Multicore Computational Center for providing access to

the IBM Bluegrit system as a hardware test environment for our
research


